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Ø Problem: previous pedestrian attribute
recognition methods failed to indicate the
attribute-region correspondence

Ø Contribution: performing attribute-specific
localization at multiple scales to find the most
discriminative region for each attribute in a
weakly-supervised manner

Ø Results: improvement across three datasets,
end-to-end trainable, less computational cost

Ø Top-down feature pyramid
low-level details: feature learning
high-level semantics: localization

Ø Deep supervision for training
4 predictions are directly supervised by
GT, trained insufficiently otherwise

Ø Maximum voting for inference
choosing the most confident prediction

Effectiveness of each component

Ø Attribute-agnostic attention: attend to a broad
region, no attribute-region correspondence

Ø Rigid body parts localization: simply fuse the
local features, require extra computation

Ø We need Attribute-Specific Localization
√ maintain the attribute-region correspondence
√ fully adaptive, without region annotations
√ interpretable and computationally efficient

Summary Methodology Ablation Study
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Quantitative Results

Ø Spatial transformer
simplified STN, learn to represent attribute region
should be adaptive and differentiable (RoI pooling can’t)

Ø Feature alignment
a tiny channel attention sub-network, modulating the inter-
channel dependencies, since features from different levels
should contribute unequally (some need more details).

Ø One for each attribute, but still light-weight

Three different attribute-specific methods
Ø Each attention mask corresponds to one attribute

over-adaptive: try to cover all pixels but often failed,
since there is no accurate localization labels.

Ø Each attribute associated with predefined parts
lack-adaptive: discard the adaptive factors, which are
less robust to variances.

Ø We achieve a balance
between two extremes using
attribute-specific bounding
boxes, which relatively coarse but more interpretable.
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