

### Summary

- > **Problem**: previous pedestrian attribute recognition methods failed to indicate the attribute-region correspondence
- > **Contribution**: performing attribute-specific localization at multiple scales to find the most discriminative region for each attribute in a weakly-supervised manner
- > **Results**: improvement across three datasets, end-to-end trainable, less computational cost













Backpack

PlasticBag

BodyFat

Hat

# Motivation

- > <u>Attribute-agnostic attention</u>: attend to a broad region, no attribute-region correspondence
- Rigid body parts localization: simply fuse the local features, require extra computation
- > We need Attribute-Specific Localization
  - ✓ maintain the attribute-region correspondence
  - fully adaptive, without region annotations
  - $\checkmark$  interpretable and computationally efficient





Ours

Attribute: Longhair







**Body-parts** 

# **Improving Pedestrian Attrib** Weakly-Supervised Multi-Scale At

Chufeng Tang<sup>1</sup>, Lu Sheng<sup>2</sup>, Zhaoxi <sup>1</sup>Tsinghua University, <sup>2</sup>Beihang University

# Methodolog



# > Spatial transformer

simplified STN, learn to represent attribute region should be adaptive and differentiable (Rol pooling can't)

#### > Feature alignment

a tiny channel attention sub-network, modulating the interchannel dependencies, since features from different levels should contribute unequally (some need more details).

# > One for each attribute, but still light-weight

|          | DeepMar | PGDM  | VeSPA | LG-Net | GRL   | <b>BN-Inception</b> | Ours  |
|----------|---------|-------|-------|--------|-------|---------------------|-------|
| mA       | 73.79   | 74.31 | 77.70 | 78.68  | 81.20 | 75.76               | 81.87 |
| # Params | 58.5M   | 87.2M | 17.0M | >20M   | >50M  | <b>10.3M</b>        | 17.1M |
| GFLOPs   | 0.72    | ≈1    | > 3   | > 4    | >10   | 1.78                | 1.95  |

| <b>Dute Recognition With</b><br><b>tribute-Specific Localization</b><br>iang Zhang <sup>3</sup> , Xiaolin Hu <sup>1</sup> *<br>y, <sup>3</sup> Chinese Academy of Sciences                                                    |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| gy<br>> Ton-down feature pyramid                                                                                                                                                                                              | Effec |
| Iow-level details: feature learning<br>high-level semantics: localization                                                                                                                                                     |       |
| Maximum<br>4 predictions are directly supervised by<br>GT, trained insufficiently otherwise                                                                                                                                   | +3.   |
| Choosing the most confident prediction                                                                                                                                                                                        | +1    |
| weighted binary cross-entropy loss $\mathcal{L} = \sum_{i=1}^{4} \mathcal{L}_i$<br>$\mathcal{L}_i(\hat{y}_i, y) = -\frac{1}{M} \sum_{i=1}^{M} \gamma^m (y^m \log(\sigma(\hat{y}_i^m)) + (1-y^m) \log(1-\sigma(\hat{y}_i^m)))$ | Three |
| M = 1                                                                                                                                                                                                                         |       |

# **Quantitative Results**

| Da           | PETA       |       | RAP   |       | PA-100K |       |       |
|--------------|------------|-------|-------|-------|---------|-------|-------|
| Method       | Metric     | mA    | F1    | mA    | F1      | mA    | F1    |
| ACN          | [ICCVw'15] | 81.15 | 82.64 | 69.66 | 75.98   | -     | _     |
| DeepMar      | [ACPR'15]  | 82.89 | 83.41 | 73.79 | 75.56   | 72.70 | 81.32 |
| JRL          | [ICCV'17]  | 85.67 | 85.42 | 77.81 | 78.58   | -     | -     |
| JRL*         | [ICCV'17]  | 82.13 | 82.02 | 74.74 | 74.62   | -     | -     |
| GRL          | [IJCAI'18] | 86.70 | 86.51 | 81.20 | 79.29   | -     | -     |
| HP-Net       | [ICCV'17]  | 81.77 | 84.07 | 76.12 | 78.05   | 74.21 | 82.53 |
| VeSPA        | [BMVC'17]  | 83.45 | 85.49 | 77.70 | 79.59   | 76.32 | 83.20 |
| DIAA         | [ECCV'18]  | 84.59 | 86.46 | -     | -       | -     | -     |
| PGDM         | [ICME'18]  | 82.97 | 85.76 | 74.31 | 77.35   | 74.95 | 83.29 |
| LG-Net       | [BMVC'18]  | -     | -     | 78.68 | 80.09   | 76.96 | 85.04 |
| BN-Inception |            | 82.66 | 85.57 | 75.76 | 78.20   | 77.47 | 85.97 |
| Ours         |            | 86.30 | 86.85 | 81.87 | 80.16   | 80.68 | 86.46 |



Each attribute associated with predefined parts lack-adaptive: discard the adaptive factors, which are less robust to variances.

> We *achieve a balance* between two extremes using attribute-specific bounding

boxes, which relatively coarse but more interpretable. Attribute Regions Attention Masks Rigid Parts



# **Ablation Study**

#### fectiveness of each component

|                                              | Metric                                            |       | <b>E</b> 1 |  |
|----------------------------------------------|---------------------------------------------------|-------|------------|--|
|                                              | Component                                         | ША    | ГІ         |  |
|                                              | Baseline                                          | 75.76 | 78.20      |  |
| -                                            | ALM at Single Level (5b)                          | 77.45 | 79.14      |  |
| [%0                                          | ALM at Multiple Levels (3b,4d,5b)                 | 78.89 | 79.50      |  |
|                                              | Top-down (Addition)                               | 78.51 | 79.42      |  |
| 7%                                           | Top-down (Concatenation)                          | 79.93 | 79.91      |  |
|                                              | Top-down (Channel Attention)                      | 80.61 | 79.98      |  |
| 207-                                         | Deep Supervision (Averaging)                      | 80.70 | 80.04      |  |
| <b>)                                    </b> | <b>Deep Supervision</b> (Maximum) ( <b>Ours</b> ) | 81.87 | 80.16      |  |
|                                              | Ours w/o ALMs                                     | 78.91 | 79.55      |  |

### hree different attribute-specific methods Each attention mask corresponds to one attribute

over-adaptive: try to cover all pixels but often failed, since there is no accurate localization labels.

F1 mА Method **Rigid** Part 76.56 78.84 Attention Mask 78.35 79.51 81.87 80.16 **Attribute Region** 

